
1

Szymon Grabowski
sgrabow@kis.p.lodz.pl

Łódź, 2016

Języki i środowiska

przetwarzania danych

rozproszonych

Scala 1

Based mostly on:

C. Horstmann, Scala for the Impatient, 2012

M. Odersky et al., Programming in Scala, 2nd Ed., 2010

and http://www.cs.columbia.edu/~bauer/cs3101-2/

2

Install

www.scala-lang.org/downloads

http://www.scala-sbt.org/download.html (SBT is a build tool)

scala -version // scala[.bat] – opens the REPL

compiler: scalac

scala> 12 * 11.9

res0: Double = 142.8

scala> :quit // or :q

// ScriptDemo.scala

println("Hello, Scala!")

To execute a script:

scala ScriptDemo.scala

3

val and var

val (=value) is immutable

var (=variable) is mutable

If possible, prefer values over variables!

val x = 5

// x = 2 // ERROR!

val x1, x2 = 20

Or:

val x: Int = 5; val y: Double = -3.2;

val anotherDouble = -3.2

val text = "Hello" // or: val text: String = "Hello"

var x = 3.5; x = -1

Type inference:

from the init with e.g. 5 Scala ‘knows’

that our value is of type Int.

Same with Double, String, Vector…

4

Some more types

Boolean: true | false

val keyKnown = false

val ok: Boolean = true

Vector – a popular container

scala.collection.immutable.Vector[…]

val v = Vector(3, 2, 10, 5)

var v2 = v.sorted

println(v2)

// v(0) = -1 // ERROR

v2 = v2.reverse // it’s a method call!

println(v2)

val v3 = v updated(1, 99) // Vector(3, 99, 10, 5)

val r1 = Range(5, 8) // 5, 6, 7

val r2 = Range(5, 8).inclusive

 // 5, 6, 7, 8

5

Expressions

An expression produces a result.

E.g.:

scala> val i = 4;

i: Int = 4;

scala> i + 3

res1: Int = 7
Watch this!

Unit type: more or less equivalent

to void in Java.

6

Brevity in Scala (some examples)

• return keyword may be omitted (the last expression in a

compound expression is the result)

• semicolons may be omitted

• type inference

• parens in method calls may be omitted if zero or one

argument follows – only in the so-called operator notation!

• dot after the object name in method call may be omitted in

the same case as above

The last two listed rules in action:

3 * 4

// It’s the same as: 3.*(4)

val ell = List(2, 3, 5, 7, 11)

print(ell head) // 2

Console print ell.head // 2

One of my most productive days

was throwing away 1000 lines of code.

 / Ken Thompson,

 co-designer of Unix /

7

Scala’s best

(from Java to Scala)

case class Person(var firstName: String, var lastName: String)

8

Methods with no parameters

As said, parens are then not needed.

Yet, it’s good style to use () for a mutator method

and drop the () for an accessor method.

Even more: we can enforce this convention:

class Counter { def current = value // no () }

Now the invocation myCounter.current() is forbidden

(only myCounter.current is correct).

9

On type inference

10

Are these two functions equivalent?

def check1(x: Double) = if (x < 1.0 || x > 10.0) false else true

def check2(x: Double) = if (x >= 1.0 && x <= 10.0) true else false

Is check1(x) == check2(x) for any x?

No.

val x = Double.NaN // or: … = 0.0 / 0.0

print(check1(x), check2(x))

// (true,false)

11

Functions in Scala are objects

Their type depends on how many arguments they have.

E.g. Function2[Int, String, Boolean] (which extends AnyRef)

means a 2-argument function (Int, String) => Boolean.

A call f(3, "abc") will be expanded to f.apply(3, "abc").

Methods can be used as functions:

if you write a method name

where a Function object is required,

the compiler will create a Function object for you.

12

Type hierarchy

13

The Scala classes Any, AnyRef and AnyVal

don’t appear as classes in bytecode,

because of intrinsic limitations of the JVM.

(in Java not everything is an object!).

In Scala, on the other hand, everything is an object,

all objects belong to a class, and they interact through methods.

The JVM bytecode generated does not reflect this.

So, in Scala, all objects are descendant from Any,

and that includes both what

Java considers objects and what Java considers primitives.

Everything that is considered a primitive in Java

is descendant from AnyVal in Scala.

AnyRef in Scala is equivalent to java.lang.Object

(on the JVM; on .NET it was an alias for System.Object).

A note on Scala types

http://stackoverflow.com/questions/2335319/

what-are-the-relationships-between-any-anyval-anyref-object-and-how-do-they-m

14

The Java primitive types

You can’t write: new Int(5) (nor Int(5), new Int etc.) in Scala.

error: class Int is abstract; cannot be instantiated

Int, Double etc. classes are abstract and final.

The instances of these classes are

all written as literals in Scala.

Internally, Scala stores e.g. Ints are 32-bit integers,

exactly like Java’s int values.

Good for efficiency and interoperability with Java libraries.

15

Type Nothing inherits any other type

Nothing != Unit. Nothing has no instances.

16

Lists

Lists (like strings) are immutable.

List has O(1) prepend and head/tail access. Most other operations

(incl. index-based lookup, length, append) take O(n) time.

17

‘cons’ operator

Cons behavior is specific.

Lists are constructed right-to-left.

General rule: if an operator ends in :

it is translated into a method call on the right operand.

18

Some operations on lists

Indexing: list(0)

Slicing: list.slice(1, 3); list.slice(2, list.last)

Reversing: list.reverse

Sorting: list.sorted

Partitioning according to a predicate:

partition (p : (A) => Boolean) : (List[A], List[A])

span (p : (A) => Boolean) : (List[A], List[A])

Returns the longest prefix of the list whose elements all

satisfy the given predicate, and the rest of the list.

=> called informally a rocket operator

19

Some operations on lists, cont’d

forall

val list = List("boo", "woo", "woo")

print(list forall(it => it endsWith "o")) // true

print((list ::: "o!" :: Nil) forall(it => it endsWith "o")) // false

exists

val list = List(5, -3, 2, 1)

print(list exists(x => x % 2 == 0)) // true

They work for many other collections (and strings) too.

(For maps, however, it’s probably much more efficient to use

contains than exists.)

val s = "STRING"; println(s forall Character.isUpperCase) // true

20

What is Nil?

Nil is defined as:

package scala.collection.immutable

object Nil extends List[Nothing] with Product with

Serializable

List[A] is a covariant type (more on this later), which

means that e.g. List[String] is a subtype of List[AnyRef],

or List[Nothing] is a subtype of List[A] for any type A.

Therefore, we don’t need to write Nil[A] for all types A!

One Nil object is enough.

Dean Wampler & Alex Payne, Programming Scala, 2nd Ed., 2015, Chap. 10.

21

Extract Method (common refactoring technique)

Can we always easily extract a method?

(And what does it have to do with Scala?)

If some variable from scalarProduct(…)

changes in the supposed

printScalarProduct(…), we are unlucky…

In Scala: we could have e.g.

val x: List[Int] = … (same with y, product)

and we’re safe from possible side-effects.

E
x
a

m
p

le
 f
ro

m
:

h
tt

p
:/
/w

a
z
n
ia

k
.m

im
u
w

.e
d

u
.p

l/
im

a
g
e

s
/d

/d
8

/Z
p
o

-8
-w

y
k
.p

d
f

22

for (y <- List(1, 2, 3)) { println(y) }

for loop

for as an expression:

23

for loop: multiple filters possible, variable binding…

http://tutorials.jenkov.com/scala/for.html

for / yield = for comprehension

24

Operators

Formally, there’s no “operator overloading” in Scala;

e.g. + is “just a function/method”.

Yet, there are some things to remember…

If a plain (method/function or var) identifier starts with a letter or _,

it cannot contain operator symbols (+-*/< etc.).

E.g. val xyz++= = 1 won’t compile.

Operators have priorities and associativity.

2 + 3 * 2 8

but 2.+(3).*(2) 10 !! (2.+(3) * 2 == 10 too)

2 + 3.*(2) == 8 (conclusion: the period binds earlier than e.g. + or *).

Priority depends on the first (leftmost) symbol of an operator,

while associativity on the last (rightmost) symbol.

25

Creating an operator function

def ~=(x: Double, y: Double, precision: Double) = {

 if ((x - y).abs < precision) true else false

}

scala> val a = 0.3

a: Double = 0.3

scala> val b = 0.1 + 0.2

b: Double = 0.30000000000000004

scala> ~=(a, b, 0.0001)

res0: Boolean = true

Alvin Alexander, Scala Cookbook, 2013. Chap. 2.5.

26

Infix operators

Any method with 1 param can be used as an infix operator.

http://docs.scala-lang.org/tutorials/tour/operators.html

Now we can define xor like this:

More traditionally, it would be like:

def xor(x: MyBool, y: MyBool) = x.or(y).and(x.and(y).negate)

27

Arrays are mutable

There are mutable and immutable versions

of many reference types in Scala.

If possible, use immutable ones!

28

Hints on arrays

Multi-dim array: val a = Array.ofDim[Int](3, 2)

29

ArrayBuffer is equivalent of java.util.ArrayList

Conversions to Array/ArrayBuffer:

b.toArray, a.toBuffer

30

Traversing Arrays (and ArrayBuffers)

for (i <- 0 until a.length)

 println(i + ": " + a(i))

// or:

for (i <- 0 to a.length-1) ...

// or (just the element, no index):

for (elem <- a) println(elem)

0 until (a.length, 2)

// Range(0, 2, 4, ...)

(0 until a.length).reverse

// Range(..., 2, 1, 0)

31

Transforming arrays

arr is an array of integers,

we want to double the even elements (even values,

not at even positions) and reject odd ones.

Possible (and equivalent) solutions:

for (elem <- arr if elem % 2 == 0) yield 2 * elem

arr.filter(_ % 2 == 0).map(2 * _)

arr filter { _ % 2 == 0 } map { 2 * _ }

Sort an array:

val b = ArrayBuffer(1, 7, 2, 9) // could be Array(…) as well

val bSorted = b.sorted // ArrayBuffer(1, 2, 7, 9)

val bSorted2 = b.sortWith(_ > _) // ArrayBuffer(9, 7, 2, 1)

32

Some other functions on arrays

arr.mkString(" and ")

 // "1 and 2 and 7 and 9"

arr.mkString("<", ",", ">")

 // "<1,2,7,9>"

ArrayBuffer("Mary", "had", "a", "little", "lamb").max

// "little"

Sorting an Array (but not an ArrayBuffer) in place:

val a = Array(1, 7, 2, 9)

scala.util.Sorting.quickSort(a)

// a is now Array(1, 2, 7, 9)

// works with numbers, strings and generally all types

// with the Ordered trait (i.e. with defined comparison op)

33

Tuples

34

Tuples, cont’d

35

Tuples and zipping

36

2-element tuples created with the method ->

"Poland" -> "Warsaw"

// (java.lang.String, java.lang.String) = (Poland,Warsaw)

3 -> "abc"

// (Int, java.lang.String) = (3,abc)

class X

new X -> "1" // still OK! So, how does it work?

You can invoke the -> method on any object

and it works (as expected).

Thanks to the implicit conversion mechanism.

37

A tuple isn’t a collection, but…

we can treat a tuple as a collection via an iterator:

val t = ("Poland" -> "Warsaw")

val it = t.productIterator

for (e <- it) print(e + " ") // Poland Warsaw

Converting a tuple to a collection:

t.productIterator.toArray

// Array[Any] = Array(Poland, Warsaw)

38

Collections in Scala
(more systematically)

• All collections extend the Iterable trait.

• The three major categories of collections are

sequences, sets, and maps.

• Scala has mutable and immutable versions

of most collections.

• Sets are unordered collections.

• Use a LinkedHashSet to retain the insertion order or a

SortedSet to iterate in sorted order.

• + adds an element to an unordered collection;

+: and :+ prepend or append to a sequence;

++ concatenates two collections; - and -- remove elements.

39

Key traits in the Scala collections library

http://www.wikiwand.com/nl/Scala_%28programmeertaal%29

40 40

Maps are iterables over (key, values) pairs.

Map.get(key) returns an Option type.

Maps

41

Checking if a string contains any special chars

We want to check if a given string contains [a-zA-Z0-9]

chars only, or something else.

Using a regex is one solution, but we can go without it.

val ordinary = (('a' to 'z') ++ ('A' to 'Z') ++ ('0' to '9')).toSet

def isOrdinary(s: String) = s forall(ordinary contains _)

print(isOrdinary("1Abc"), isOrdinary("1 Abc")) // (true,false)

42

Implicit type conversions (also called views)

are special functions that are automatically applied by

the compiler if necessary.

Say, there is a type conversion from A to B,

named AtoB. If some function is expecting an

argument of type B, but is given an argument of type A,

the compiler automatically inserts AtoB.

Implicit conversions

Example:

"Hello".toList

gets converted into

Predef.stringWrapper("Hello").toList

43

How to create implicit conversions

44

Rules for implicits

Use the keyword implicit.

An inserted implicit conversion must be in scope.

Only one implicit is tried

(the compiler will never rewrite x + y to

convert1(convert2(x)) + y).

If the code works without an implicit conversion,

no implicits are attempted.

45

Implicit conversion examples

implicit def doubleToInt(x: Double) = x.toInt

val tup: (Int, Int) = (1.6, -2.8) // tup: (Int, Int) = (1,-2)

// note: Double --> Int in Scala truncates towards zero

The scala.Predef object, implicitly imported into

every Scala program, defines implicit conversions that convert

“smaller” numeric types to “larger” ones.

For example, Predef includes:

implicit def int2double(x: Int): Double = x.toDouble

(that’s why in Scala e.g. Int values can be stored in variables

of type Double; no special rules, only implicit conversions in action).

Imagine:

class Complex(val re: Double, val im: Double) …

How to invoke c + 1, where c of type Complex?

Use an implicit conversion (an Int will be wrapped to a Complex).

46 46

Instances of Option are either an instance of scala.Some or the object None.

val capitals = Map(...); val countries = List(...)

for (c <- countries) {

 val description = capitals.get(c) match {

 case Some(city) => c + ": " + city

 case None => "no entry for " + c

 }

 println(description)

}

Option

47
Joshua D. Suereth, Scala in Depth, 2012. Chap. 2.4.

var x : Option[String] = None

x.get // java.util.NoSuchElementException: None.get at …

x.getOrElse("default")

x = Some("Now Initialized")

x.get // String = Now Initialized

x.getOrElse("default") // String = Now Initialized

def getTemporaryDirectory(tmpArg: Option[String]): java.io.File = {

 tmpArg.map(name => new java.io.File(name)).

 filter(_.isDirectory).

 getOrElse(new java.io.File(System.getProperty("java.io.tmpdir")))

}

A great feature of Option is that you can treat it as a

collection (of size 0 or 1) can perform map, flatMap and

foreach methods, and use inside a for expression.

Option use cases (1/2)

48
Joshua D. Suereth, Scala in Depth, 2012. Chap. 2.4.

val username: Option[String] = ...

for(uname <- username)

 println("User: " + uname)

def authenticateSession(session: HttpSession,

 username: Option[String],

 password: Option[Array[Char]]) = {

 for(u <- username;

 p <- password;

 if canAuthenticate(u, p)) {

 val privileges = privilegesFor(u) // no need for Option

 injectPrivilegesIntoSession(session, privileges) // ditto

 }

}

Option use cases (2/2)

49

Classes: primary constructor, method(s) and fields

50

Auxiliary constructors

51

Private methods and fields

52

Overriding methods and fields

53

Getters and setters

In Java we avoid public fields.

So in Scala, but in a different (not obvious at the first look) way.

In Scala, fields in classes automatically come

with getters and setters.

Scala generates a class for the JVM

with a private field age,

and a getter (here: age()) and

a setter (here: age_=()) method.

We say this class has an age property.

val joe = Person

joe.age = 25 // calls joe.age_=(25)

println(joe.age) // calls joe.age()

54

Getters and setters, cont’d

Do we really want a getter/setter pair for each field?

Often not, and fortunately we have control over it.

If the field is private, the getter and setter are private.

If the field is val, only a getter is generated.

If we don’t want any getter or setter,

we declare the field as private[this].

Getter / setter redefinition example

55

Lazy vals

A value is called lazy

when it is evaluated only at its first use.

56

Closures

object ClosureDemo1 {

 def main(args: Array[String]): Unit = {

 var total: Int = 100

 var calc = (num: Int) => num + total

 print(calc(5))

 }

}

object ClosureDemo2 {

 def main(args: Array[String]): Unit = {

 var total: Int = 100

 var calc = (num: Int) => num + total

 total = 2

 print(calc(5))

 }

}

57

Closures, cont’d

var (maxFirstLen, maxSecondLen) = (0,0)

list.foreach {

 x => maxFirstLen = max(maxFirstLen, x.firstName.length)

 maxSecondLen = max(maxSecondLen, x.secondName.length)

}

We cannot write an equivalent in Java 8, with a lambda,

since it is impossible to modify the content the lambda

expression has been called from.

http://kukuruku.co/hub/scala/java-8-vs-scala-the-difference-in-approaches-and-mutual-innovations

58

In Scala, one thing can be expressed

in many ways

http://www.slideshare.net/Bozho/scala-the-good-the-bad-and-the-very-ugly?related=1

59

Inheritance

In Scala we never call super(params).

60

Overriding methods

In Scala, you must use the override modifier when

you override a method that isn’t abstract.

Invoking a superclass method works just like

in Java, with the keyword super.

61

Type checks and casts

62

Overriding fields

• a def can only override another def

• a val can only override another val or a parameterless def

• a var can only override an abstract var

63

Uniform access principle
[B. Meyer, Object-Oriented Software Construction, 2nd Ed., 2000]

All services offered by a module should be available

through a uniform notation, which does not betray

whether they are implemented

through storage or through computation.

In Scala, it is possible for a field to override a

parameterless method. A client may not even know

if he uses a field or calls a method

(encapsulation!).

64

Named and default parameters

65

Function literals (= lambdas)

66

Function literals, short form

Strange?

Not really.

Target typing: If a function literal is used immediately,

the compiler can do type inference.

67

Pattern matching (keywords: match, case)

But it’s much more than switch / case …

68

Cases with a guard (i.e., if)

https://www.safaribooksonline.com/library/view/scala-cookbook/9781449340292/ch03s14.html

69

Case classes and pattern matching

70

Pattern matching, more examples
(based on books: List[Publication] = List(…))

71

Pattern matching, other examples

72

Type checks with pattern matching

73

What does it print? Choose 1, 2, 3 or 4

74

What does it print? Solution

The correct answer is 3:

String of length 6

Not a string

In Scala, matching by type is implemented via

the isInstanceOf method,

which performs checks based on runtime type.

Recall also that null is of type Null,

and Null is at the bottom of the type hierarchy

(just above Nothing).

A. Phillips, N. Šerifović, Scala Puzzlers, 2014 (Puzzler 27)

75

A pattern can be passed to any method

that takes a single parameter function

76

Sealed classes

A sealed class can’t have any subclasses

defined outside the same source file.

Note it’s safe to use pattern matching on sealed classes:

nobody can define additional subclasses later,

creating unknown match cases.

77

Matching lists

78

Matching lists, cont’d

val items = List("apple", "orange", "pear", "nut")

val result = items match {

 case List("apple") => "Just apples"

 case List("apple", "orange", otherFruits @ _*) =>

 "apples, oranges, and " + otherFruits

 case _ => ()

}

result: Any = apples, oranges, and List(pear, nut)

79

Sorting by multiple fields

case class Person(first: String, middle: String, last: String)

val personList = List(Person("John", "A.", "Smith"),

 Person("Steve", "J.", "Hathaway"),

 Person("Bill", "W.", "Smith"),

 Person("Philip", "A.", "Drake"))

We want to sort personList by:

• last name’s length, descendingly,

• last name (lex),

• first name (lex).

val result = personList.sortBy{ case Person(f, m, l) => (-l.length, l, f) }

// List(Person(Steve,J.,Hathaway), Person(Philip,A.,Drake),

Person(Bill,W.,Smith), Person(John,A.,Smith))

80

Sorting by multiple fields, cont’d

val r = new scala.util.Random(123456L)

val data = (1 to 5).map(x => (r.nextInt(2) + 1, r.nextDouble))

// data: scala.collection.immutable.IndexedSeq[(Int, Double)] =

// Vector((1,0.8820721207620854), (1,0.2522554407939305),

// (2,0.3064387004589798), (2,0.5360645079196139),

(1,0.146892585205327))

val dataSorted = data.sortWith { case ((n1, m1), (n2, m2)) =>

 (n1 < n2) || (n1 == n2 && m1 < m2)

}

http://reactive.xploregroup.be/blog/8/Sorting-on-multiple-fields-and-Tuples

