
1

Szymon Grabowski
sgrabow@kis.p.lodz.pl

Łódź, 2016

Języki i środowiska

przetwarzania danych

rozproszonych

Scala 2

Based mostly on:

C. Horstmann, Scala for the Impatient, 2012

M. Odersky et al., Programming in Scala, 2nd Ed., 2010

and http://www.cs.columbia.edu/~bauer/cs3101-2/

2

Traits are similar to Java 8 interfaces

That is, traits are interfaces with possible

implementations (=concrete methods).

As opposed to Java 8, traits also support state

(i.e., may have variables).

Traits can reference the implementing class and place

restrictions on which type can mix-in them.

Traits can also override methods from Object, e.g.:

trait MyToString {

 override def toString = s"[${super.toString}]"

}

3

Using a concrete (non-abstract) trait

trait ConsoleLogger {

 def log(msg: String) { println(msg) }

}

class SavingsAccount extends Account with ConsoleLogger {

 def withdraw(amount: Double) {

 if (amount > balance) log("Insufficient funds")

 else balance -= amount

 }

 ...

}

Note: when a trait changes,

all classes that mix in that trait must be recompiled.

4

Objects with traits

trait Logged { def log(msg: String) {} } // A dummy trait

class SavingsAccount extends Account with Logged {

 def withdraw(amount: Double) {

 if (amount > balance) log("Insufficient funds")

 else ...

 }

 ...

}

trait ConsoleLogger extends Logged {

 override def log(msg: String) { println(msg) }

}

val acct = new SavingsAccount with ConsoleLogger

When calling log on acct, log method of ConsoleLogger executes.

Of course, another object can add in a different trait:

val acct2 = new SavingsAccount with FileLogger

5

Layered traits

With traits, super.log does NOT have the same meaning

as it does with classes.

Instead, super.log calls the next trait in the trait hierarchy,

which depends on the order in which the traits are added.

Generally, traits are processed starting with the last one.

Example:

val acct1 = new SavingsAccount with ConsoleLogger with

 TimestampLogger with ShortLogger

val acct2 = new SavingsAccount with ConsoleLogger with

 ShortLogger with TimestampLogger

// what is the result of calling log on acct1 and acct2?

Sun Feb 06 17:45:45 ICT 2011 Insufficient... // acct1's log

Sun Feb 06 1... // acct2’s log

6

Trait construction order

Just like classes, traits can have constructors, made up of field

initializations and other statements in the trait’s body. For example,

trait FileLogger extends Logger {

 val out = new PrintWriter("app.log") // Part of the trait's constructor

 out.println("# " + new Date().toString) // Also part of the constructor

 def log(msg: String) { out.println(msg); out.flush() }

}

These statements are executed during construction of any object

incorporating the trait. Constructors execute in the following order:

• The superclass constructor is called first.

• Trait constructors are executed after the superclass constructor

but before the class constructor.

• Traits are constructed left-to-right.

• Within each trait, the parents get constructed first.

• If multiple traits share a common parent, and that parent has already

been constructed, it is not constructed again.

• After all traits are constructed, the subclass is constructed.

7

Traits, some extra notes

Traits can’t have auxiliary constructors

and their primary constructor can’t have parameters.

The primary constructor (=the body of the trait)

can’t pass values to a super type’s constructor.

As a result, traits can only extend classes with

a zero-param constructor (either primary or auxiliary).

The abstract keyword in front of a trait member

isn’t necessary as the compiler can figure it out

from its lack of initialization

(or lack of implementation for methods).

I.e.: def flyMessage: String

is OK.

http://joelabrahamsson.com/learning-scala-part-seven-traits/

8

Thin vs rich interfaces

Old Java interfaces are usually thin (=have few methods).

Otherwise, implementing them is burdensome for the clients.

But Java8 interfaces and Scala traits may contain

both non-empty (but possibly abstract!) methods

and method signatures.

If a method is implemented in the trait,

the client doesn’t need to override it.

Example: Ordered[T] trait.

Define its compare method (for the class that uses this trait)

and the operators <, <=, >, >= will immediately be available.

9

object (keyword)

Use objects (rather than classes)

for singletons and utility methods.

A class can have a companion object with the same name.

Objects can extend classes or traits.

The apply method of an object is usually used for

constructing new instances of the companion class.

To avoid the main method, use an object

that extends the App trait.

10

Companion object

class Account {

 val id = Account.newUniqueNumber()

 private var balance = 0.0

 def deposit(amount: Double) { balance += amount }

 ...

}

object Account { // The companion object

 private var lastNumber = 0

 private def newUniqueNumber() =

 { lastNumber += 1; lastNumber }

}

The class and its companion object can access

each other’s private features.

They must be located in the same source file.

11

apply method

Objects often have apply() method.

The apply method is called for expressions of the form

Object(arg1, ..., argN).

val arr = Array("a", "few", "strings") // no new!

Why? Simplified syntax:

Array(Array(1, 3), Array(2, 5))

vs

new Array(new Array(1, 3), new Array(2, 5))

12

Don’t confuse Array(10) and new Array(10).

The first expression calls apply(10), yielding an Array[Int]

with a single element, the integer 10.

The second one invokes the constructor this(10).

The result is an Array[Nothing] with 10 null elements.

Beware!

Type Nothing is used rarely, yet it has its use cases.

One example is the return type for methods

which never return normally.

One example is method error in scala.sys,

which always throws an exception.

13

Case classes

Case classes can be pattern matched.

Case classes automatically define hashCode, equals,

toString, copy.

Case classes automatically define getter (*) methods

for the constructor arguments.

When constructing a case class, a class as well as

its companion object are created.

The companion object implements the apply method that

can be used as a factory method (no “new” then needed).

(*) and setter methods, if "var" is specified in the constructor argument

14

Case classes & pattern matching, another example

http://www.devx.com/enterprise/introduction-to-functional-programming-in-scala.html

15

equals (or: ==), hashCode (or: ##), eq

In Scala, the ## method is equivalent to the Java’s

hashCode method

and the == method is equivalent to equals in Java.

In Scala, when calling the equals or hashCode method it’s better to use

and ==. These methods provide additional support for value

types. But the equals and hashCode method are used when overriding

the behavior. This split provides better runtime consistency and still

retains Java interoperability.

To check if two references point to the same object,

use the method eq in Scala.

Joshua D. Suereth, Scala in Depth, 2012. Chap. 2.5.

16

On the == method

The == method is defined in AnyRef class.

It first checks for null values, and then calls the equals

method on the first object (i.e., this)

to see if the two objects are equal.

As a result, you don’t have to check

for null values when comparing strings.

scala> val s1 = null

s1: Null = null

scala> val s2: String = null

s2: String = null

scala> val s3 = "abc"

s3: String = abc

scala> s1 == s2

res0: Boolean = true

scala> s1 == s3

res1: Boolean = false

scala> s2 == s3

res2: Boolean = false

17

What does it do?

http://jlaskowski.blogspot.com/

From the scala doc on regexes:

18

printf-style in print / println

scala> println(f"$name is $age years old, and weighs $weight%.2f

pounds.")

Fred is 33 years old, and weighs 200.00 pounds.

f string interpolator allows to use printf style

formatting specifiers inside strings

19

import

Basically similar to Java, yet a different wildcard: *  _

e.g.

import scala.actors._

import java.io._

If the first segment is “scala”, we can omit it:

import actors._

(But don’t use scala.actors, it’s deprecated since v2.10. )

Or: import x.y // say, this package contains class C

 val c = y.C

The import is more flexible than in Java:

import scala.util.{Try, Success, Failure}

import java.util.{Map => JMap, List => JList} // import rename

Can use import anywhere in the code!

20

import java.lang._

import scala._

import Predef._

Unlike all other imports, import scala._ overrides

the preceding import!

E.g. scala.StringBuilder overrides java.lang.StringBuilder.

Thx to the default imports, you can write

e.g. collection.immutable.SortedMap

rather than scala.collection.immutable.SortedMap.

Imported by default

21

???

(yes, it’s a method)

package scala

object Predef {

 ...

 def ??? : Nothing = throw new NotImplementedError

 ...

}

As ??? returns Nothing, it can be called by any other function!

Typical example, a method declared but not yet defined:

/** @return (mean, standard_deviation) */

def mean_stdDev(data: Seq[Double]): (Double, Double) = ???

Dean Wampler & Alex Payne, Programming Scala, 2nd Ed., 2015, Chap. 10.

22

import scala.collection.JavaConversions.bufferAsJavaList

import scala.collection.mutable.ArrayBuffer

val command = ArrayBuffer("ls", "-al", "/home/ray")

// calling java.util.ProcessBuilder’s constructor

// which works with List<String>!

val pb = new ProcessBuilder(command)

If you import the implicit conversion methods from

scala.collection.JavaConversions, then you can use e.g.

Scala buffers in your code, and they automatically get

wrapped into Java lists when calling a Java method.

import scala.collection.JavaConversions.asScalaBuffer

import scala.collection.mutable.Buffer

val cmd: Buffer[String] = pb.command() // Java to Scala

// can’t use ArrayBuffer - the wrapped object is

// only guaranteed to be a Buffer

Interoperating with Java

23

Funny string methods (1/2)

StringOps – this class serves as a wrapper providing Strings with

all the operations found in indexed sequences. Where needed,

instances of String object are implicitly converted into this class.

distinct: String
Builds a new sequence from this sequence without any duplicate

elements. Returns a new sequence which contains the first

occurrence of every element of this sequence.

assert("baca".distinct.sorted == "abc".distinct.sorted)

grouped(size: Int): Iterator[String]
Partitions elements in fixed size iterable collections.

print("abcdefg".grouped(3).toList)

// List(abc, def, g)

24

Funny string methods (2/2)

combinations(n: Int): Iterator[String]
Iterates over unique combinations, with the elements taken in order.

for(s <- "take".combinations(2)) print(s + " ")

// ta tk te ak ae ke

for(s <- "cocoa".combinations(3)) print(s + " ")

// cco cca coo coa ooa

permutations: Iterator[String]

Iterates over distinct permutations.

takeWhile(p: (Char) => Boolean): String
Takes longest prefix of elements that satisfy a predicate.

for((s, i) <- "abcdefgh".sliding(4) zip (1 to s.length).toIterator)

 println(" " * i + s)

25

try, catch, finally

26

Loan pattern

Write a higher-order function that “borrows”

a resource and makes sure it is returned.

27

https://wiki.scala-lang.org/display/SYGN/Loan

Ensures that a resource is deterministically disposed of

once it goes out of scope.

Loan pattern in general

The client code:

28

Extract an integer from a string

var s = "15"; var n = s.toInt // it works, but…

s = "bug"; n = s.toInt; println(n)

// java.lang.NumberFormatException

Standard solution:

def toInt(s: String): Option[Int] = {

 try {

 Some(s.toInt)

 } catch {

 case e: Exception => None

 }

}

val x = toInt("bug") // x: Option[Int] = None

print(x.getOrElse(0))

29

Extract an integer from a string, simpler

import scala.util.Try // since Scala 2.10

val x = "bla"

println(Try(x.toInt).toOption.getOrElse(0))

There are two types of Try: If an instance of Try[A] represents a

successful computation, it is an instance of Success[A],

simply wrapping a value of type A.

If, on the other hand, it represents a computation in which an error

has occurred, it is an instance of Failure[A],

wrapping a Throwable, i.e. an exception.

http://danielwestheide.com/blog/2012/12/26/the-neophytes-guide-to-scala-part-6-error-handling-with-try.html

30

flatten and flatMap

flatMap takes a function that works on the nested lists

and then concatenates the results back together

https://twitter.github.io/scala_school/collections.html

31

File processing

32

Native XML support

scala> {(1 to 3).map(i => {i})}

res0: scala.xml.Elem = 123

def now = System.currentTimeMillis.toString

<b time={now}>Hello World

res0: scala.xml.Elem = <b time="1448189090022">Hello

World

33

Extracting XML nodes and attributes

http://alvinalexander.com/scala/xml-parsing-xpath-extract-xml-tag-attributes

34

Output: [7]

Higher-order functions

Higher-order functions are functions that take

other functions as parameters, or whose result is a function.

Note that method decorator.layout is a polymorphic method

(i.e. it abstracts over some of its signature types) and the Scala

compiler has to instantiate its method type first appropriately.

http://docs.scala-lang.org/tutorials/tour/higher-order-functions.html

35

Higher-order functions, another example

36

def twice(op: Double => Double)(x: Double) = op(op(x))

 twice: (op: Double => Double)(x: Double)Double

twice (_ + 2)(3)

 res16: Double = 7.0

twice {

 x => x + 2

} (3)

 res17: Double = 7.0

New control structures

Higher order functions allow to write new control structures.

37

Generic classes

http://docs.scala-lang.org/tutorials/tour/generic-classes.html

38

Covariance (1/2)

In Java, arrays are covariant, but not in Scala.

It means that e.g. array of ints in Java is an array of Objects,

but not in Scala (use Ints vs Any here).

scala> val a1 = Array("abc")

a1: Array[String] = Array(abc)

scala> val a2: Array[Any] = a1

<console>:12: error: type mismatch;

 found : Array[String]

 required: Array[Any]

Note: String <: Any, but class Array is invariant in type T.

39

Covariance (2/2)

Covariant arrays are unsafe. But if they are really needed

in Scala (e.g. for using some Java classes/methods),

we can use casting:

scala> val a2: Array[Object] = a1.asInstanceOf[Array[Object]]

a2: Array[Object] = Array(abc)

The cast is always legal at compile-time, and it will always succeed

at runtime, because the JVM’s underlying run-time model treats arrays

as covariant, just as Java the language does.

Create an own covariant generic class X:

class X[+T] { … } // +T means that subtyping is covariant

E.g. Vector[T] is a covariant class.

Therefore, Vector[Dog] is a subtype of Vector[Animal] (if Dog <: Animal).

40

Invariance

Arrays in Scala are invariant.

It means: no conversion wider to narrower,

nor narrower to wider may be performed on the class.

Invariant generic class X: class X[T] { … }

What about Set?

41

Contravariance

Contravariance is the opposite of covariance.

Contravariant class X: class X[-T] { … }

It means that if type A is a supertype of B,

then X[B] will be a supertype of X[A] (strange??).

Use case: Function1[-T1, +R] (one-param function with argument of type

T1 and return type R). Why does Function1 need to be contravariant on

its the input parameter?

http://like-a-boss.net/2012/09/17/variance-in-scala.html

If we have Function1[Dog, Any] then this function should work for Dogs

and its subtypes. But not necessarily for Animals.

The reverse conversion works however – if we have a function that

works on Animals then this function by design should work on Dogs.

Therefore, Function1[Dog, Any]

should be a supertype (!) of Function1[Animal, Any].

42

Lists are covariant (why?)

Because List is immutable (as opposed to Array).

Assume that scala.Array is defined as

final class Array[+T] extends java.io.Serializable with

java.lang.Cloneable (in fact, it is Array[T] !).

Now smth like that would be possible (i.e., no compile-time error):

 val arr1: Array[Int] = Array[Int](1, 2)

 val arr2: Array[Any] = arr1

 arr2(0) = 1.3

Yet, we cannot update a list (only create a new List, if needed).

43

Currying

Methods may define multiple parameter lists.

When a method is called with a fewer number of

parameter lists, then this will yield a function

taking the missing parameter lists as its arguments.

def modN(n: Int)(x: Int) = ((x % n) == 0)

val t = (modN(3)(10), modN(3)(12))

 t: (Boolean, Boolean) = (false,true)

scala> arr.filter(modN(3))

res19: Array[Int] = Array(3, 21)

scala> arr.filter(modN(2))

res20: Array[Int] = Array(2, 10, 20)

44

Currying, other examples

def add(a: Int)(b: Int) = a + b

print(add(3)(4)) // 7

val f = add(5)_ // without _ it doesn’t compile!

print(f(10)) // 15

def member[T](x: Seq[T])(a: T) = x contains a

def isVowel(c: Char) = member[Char](

 List('a', 'e', 'i', 'o', 'u', 'y'))(c)

println(isVowel('p'), isVowel('e')) // (false,true)

45

Partially applied functions

def f1(a:Int, b:Int) = a + b // this is a standard function

val x = f1(2, _:Int) // x is a partially applied function

print(x(3)) // 5

46

Call-by-name function parameters

By default Scala is call-by-value (like Java): any expression is

evaluated before it is passed as a function parameter.

We can force call-by-name by prefixing parameter types with =>.

Expression passed to parameter is evaluated every time it is used.

47

Function composition

Example. Let’s define a list and 3 lambdas:

https://bcomposes.wordpress.com/2011/08/20/fun-with-function-composition-in-scala/

 We want to apply first add1, then sq, then add100 to all elem. of foo:

 foo map add1 map sq map add100

Alternatively, we can use one “map” only (note the order of functions!):

foo map (add100 compose sq compose add1)

48

Function composition, example, cont’d

Yet, it’s more general to use a list of functions:

val fns = List(add1, sq, add100)

and then apply them one by one:

foo map (fns.reverse reduce (_ compose _))

(f compose g)(x)  f(g(x))

(f andThen g)(x)  g(f(x))

We can thus express the above as:

foo map (fns reduce (_ andThen _))

Or even simpler:

val f = Function.chain(fns)

foo map f // List(104, 109, 116, 125, 136)

49

Scala preconditions

assert (not held  java.lang.AssertionError) –

a predicate which needs to be proven by a static code analyser

require (IllegalArgumentException) – used as a precondition;

blames the caller of the method for violating the condition

ensuring – similar to require, but a post-condition

def doublePositive(n: Int): Int = {

 require(n > 0)

 n * 2

} ensuring(n => n >= 0 && n % 2 == 0)

http://maxondev.com/scala-preconditions-assert-assume-require-ensuring/

Disable assertions: cmd-line option to scalac : -Xdisable-assertions

50

JUnit4 vs ScalaTest

http://www.artima.com/weblogs/viewpost.jsp?thread=252702

JUnit4 (Scala):

@Test(expected = StringIndexOutOfBoundsException.class)

public void charAtTest() {

 "hi".charAt(-1);

}

But if we want do smth with the exception, we need try..catch:

try {

 "hi".charAt(-1);

 fail();

}

catch (StringIndexOutOfBoundsException e) {

 assertEquals(e.getMessage(),

 "String index out of range: -1");

}

51

JUnit4 vs ScalaTest, cont’d

In ScalaTest:

val caught = intercept[StringIndexOutOfBoundsException] {

 "hi".charAt(-1)

}

assert(caught.getMessage ===

 "String index out of range: -1")

"intercept" here does several things:

1. if there is no exception, fail()

2. if there is an exception, check that it is of the declared type,

 else fail()

3. return the exception

52

What is the result?

List(1, 2, 3).map { i => print("* "); i + 1 }

List(1, 2, 3).map { print("* "); _ + 1 }

In REPL:

scala> List(1, 2, 3).map { i => print("* "); i + 1 }

* * * res5: List[Int] = List(2, 3, 4)

scala> List(1, 2, 3).map { print("* "); _ + 1 }

* res6: List[Int] = List(2, 3, 4)

In the first statement the code block is one expression.

In the second statement – two expressions!

The block is executed and (only) the last expression

is passed to the map.

That is, the scope of an anonymous function defined using

placeholder syntax stretches only to the expression

containing the underscore (_).

A
.P

h
ill

ip
s
,
N

.S
e
ri

fo
v
ic

,
S

c
a
la

 P
u
z
z
le

rs
,

2
0
1
4
.

53

foldLeft, foldRight, fold

foldLeft – similar to reduce in Python

(1 to 5).foldLeft(0)(_ + _)

// or: (1 to 5).foldLeft(0)((res, curr) => res + curr)

Many examples:

http://oldfashionedsoftware.com/2009/07/30/lots-and-lots-of-foldleft-examples/

foldRight – similarly, but goes from right to left

fold – arbitrary order (can use a tree structure), can be parallelized

54

foldLeft, foldRight, fold, cont’d

In most cases foldLeft and foldRight give the

same results. But…

Note also that

foldLeft is implemented with a loop and local mutable variables.

foldRight is recursive, but not tail recursive, and thus consumes one

stack frame per element in the list 

might stack overflow for long lists.

55

foldRight, example

Task: eliminate consecutive duplicates of list elements.

If a list contains repeated elements they should be replaced with

a single copy of the element.

The order of the elements should not be changed.

compress(List('a', 'a', 'a', 'a', 'b', 'c', 'c', 'a', 'a', 'd', 'e', 'e', 'e'))

--> List[Char] = List(a, b, c, a, d, e)

def compress[A](ls: List[A]): List[A] =

 ls.foldRight(List[A]()) { (h, r) =>

 if (r.isEmpty || r.head != h) h :: r

 else r

 }

http://aperiodic.net/phil/scala/s-99/p08.scala

56

Find the length of the longest line in a file

import scala.io.Source

...

val lines = Source.fromFile(args(0)).getLines()

// getLines() returns an Iterator[String]

var maxWidth = 0

for (line <- lines) maxWidth = maxWidth.max(line.length)

// or:

val longestLine = lines.reduceLeft((a, b) => if (a.length > b.length) a

 else b)

val maxWidth = longestLine.length

// or:

val lineLengths = lines map { _.length }

val maxWidth = lineLengths.reduceLeft((a, b) => if (a > b) a else b)

57

zipWithIndex

In Python, enumerate is a useful generator:

li = ["a", "b", "xyz"]

enumerate(li) # <enumerate object at 0x0000000002512E10>

list(enumerate(li)) # [(0, 'a'), (1, 'b'), (2, 'xyz')]

Common app:

for i, line in enumerate(open(sys.argv[1])):

 print i, line

In Scala, we can use zipWithIndex from Iterable trait:

for ((line, i) <- Source.fromFile(args(0)).getLines().zipWithIndex) {

 println(i, line)

}

58

Keyword type

The most basic application of keyword type is aliasing

a complicated type to a shorter name.

type ListInt = List[Int] // not really meaningful…

val x: ListInt = List(2, -5, 1)

Or: type FunctorType = (LocalDate, HolidayCalendar, Int, Boolean)

=> LocalDate

def doSomeThing(f: FunctorType)

will be interpreted by the compiler as

def doSomeThing(f: (LocalDate, HolidayCalendar, Int, Boolean) =>

LocalDate)

Another example:

type Thing[A] = Map[String, Map[String, A]]

val t: Thing[Int] = Map.empty

59

Type members

In Scala, a class can have not only field and method members.

It can have type members.

http://stackoverflow.com/questions/19492542/understanding-what-type-keyword-does-in-scala

This looks like plain generics (in a weird form).

But we can do more…

60

Lower bounds on types

class A {

 type B >: List[Int] // B has a lower bound of List[Int]

 def f(a : B) = a

}

val x = new A { type B = Traversable[Int] }

// x: A{type B = Traversable[Int]} = $anon$1@650b5efb

x.f(Set(1))

val y = new A { type B = Set[Int] }

// error: overriding type B in class A with bounds >: List[Int];

// type B has incompatible type

61

Upper bounds on types

class A {

 type B <: Traversable[Int]

 def count(b : B) = b.sum

}

val x = new A { type B = List[Int] }

println(x.count(List(1, 2))) // 3

/*

print(x.count(Set(1, 2)))

 //error: type mismatch;

 // found : scala.collection.immutable.Set[Int]

 // required: this.x.B (which expands to) List[Int]

*/

val y = new A { type B = Set[Int] }

println(y.count(Set(1, 2))) // 3

62

Streams

A stream is smth like a lazy list.

scala> val stream = 1 #:: 2 #:: 3 #:: Stream.empty
stream: scala.collection.immutable.Stream[Int] = Stream(1, ?)

val stream = (1 to 100000000).toStream

print(stream.head) // 1, same as print(stream(0))

print(stream.take(5).sum) // 15

stream.filter(_ > 100) // scala.collection.immutable.Stream[Int] = Stream(101, ?)

stream.map(_ * 3) // scala.collection.immutable.Stream[Int] = Stream(3, ?)

def fibFrom(a: Int, b: Int): Stream[Int] = a #:: fibFrom(b, a + b)

print(fibFrom(1, 1).take(7).toList) // List(1, 1, 2, 3, 5, 8, 11)

63

Lambda expressions

and SAM (single abstract method) types

in Scala 2.12 (like in Java 8)

http://booksites.artima.com/programming_in_scala_3ed/examples/html/ch31.html

Old style:

New style:

